37 research outputs found

    The human eye-movement response to maintained surface galvanic vestibular stimulation

    Get PDF

    Enhanced Video-Oculography System

    Get PDF
    A previously developed video-oculography system has been enhanced for use in measuring vestibulo-ocular reflexes of a human subject in a centrifuge, motor vehicle, or other setting. The system as previously developed included a lightweight digital video camera mounted on goggles. The left eye was illuminated by an infrared light-emitting diode via a dichroic mirror, and the camera captured images of the left eye in infrared light. To extract eye-movement data, the digitized video images were processed by software running in a laptop computer. Eye movements were calibrated by having the subject view a target pattern, fixed with respect to the subject s head, generated by a goggle-mounted laser with a diffraction grating. The system as enhanced includes a second camera for imaging the scene from the subject s perspective, and two inertial measurement units (IMUs) for measuring linear accelerations and rates of rotation for computing head movements. One IMU is mounted on the goggles, the other on the centrifuge or vehicle frame. All eye-movement and head-motion data are time-stamped. In addition, the subject s point of regard is superimposed on each scene image to enable analysis of patterns of gaze in real time

    Validation of 24-hour ambulatory gait assessment in Parkinson's disease with simultaneous video observation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's disease (PD) is a neurodegenerative disorder resulting in motor disturbances that can impact normal gait. Although PD initially responds well to pharmacological treatment, as the disease progresses efficacy often fluctuates over the course of the day, and clinical management would benefit from long-term objective measures of gait. We have previously described a small device worn on the shank that uses acceleration and angular velocity sensors to calculate stride length and identify freezing of gait in PD patients. In this study we extend validation of the gait monitor to 24-h using simultaneous video observation of PD patients.</p> <p>Methods</p> <p>A sleep laboratory was adapted to perform 24-hr video monitoring of patients while wearing the device. Continuous video monitoring of a sleep lab, hallway, kitchen and conference room was performed using a 4-camera security system and recorded to hard disk. Subjects (3) wore the gait monitor on the left shank (just above the ankle) for a 24-h period beginning around 5 pm in the evening. Accuracy of stride length measures were assessed at the beginning and end of the 24-h epoch. Two independent observers rated the video logs to identify when subjects were walking or lying down.</p> <p>Results</p> <p>The mean error in stride length at the start of recording was 0.05 m (SD 0) and at the conclusion of the 24 h epoch was 0.06 m (SD 0.026). There was full agreement between observer coding of the video logs and the output from the gait monitor software; that is, for every video observation of the subject walking there was a corresponding pulse in the monitor data that indicated gait.</p> <p>Conclusions</p> <p>The accuracy of ambulatory stride length measurement was maintained over the 24-h period, and there was 100% agreement between the autonomous detection of locomotion by the gait monitor and video observation.</p

    Strabismus measurements with novel video goggles

    Full text link
    PURPOSE: To assess the validity of a novel, simplified, noninvasive test for strabismus using video goggles. DESIGN: Cross-sectional method comparison study in which the new test, the strabismus video goggles, is compared with the existing reference standard, the Hess screen test. PARTICIPANTS: We studied 41 adult and child patients aged ≥6 years with ocular misalignment owing to congenital or acquired paralytic or comitant strabismus and 17 healthy volunteers. METHODS: All participants were tested with binocular infrared video goggles with built-in laser target projection and liquid crystal display shutters for alternate occlusion of the eyes and the conventional Hess screen test. In both tests, ocular deviations were measured on a 9-point target grid located at 0±15° horizontal and vertical eccentricity. MAIN OUTCOME MEASURES: Horizontal and vertical ocular deviations at 9 different gaze positions of each eye were measured by the strabismus video goggles and the Hess screen test. Agreement was quantified as the intraclass correlation coefficient. Secondary outcomes were the utility of the goggles in patients with visual suppression and in children. RESULTS: There was good agreement between the strabismus video goggles and the Hess screen test in the measurements of horizontal and vertical deviation (intraclass correlation coefficient horizontal 0.83, 95% confidence interval [0.77, 0.88], vertical 0.76, 95% confidence interval [0.68, 0.82]). Both methods reproduced the characteristic strabismus patterns in the 9-point grid. In contrast to Hess screen testing, strabismus video goggle measurements were even possible in patients with comitant strabismus and visual suppression. CONCLUSIONS The new device is simple and is fast and accurate in measuring ocular deviations, and the results are closely correlated with those obtained using the conventional Hess screen test. It can even be used in patients with visual suppression who are not suitable for the Hess screen test. The device can be applied in children as young as 6 years of age

    ÎĽVEMP: A Portable Interface to Record Vestibular Evoked Myogenic Potentials (VEMPs) With a Smart Phone or Tablet

    No full text
    Background: Cervical VEMPs and ocular VEMPs are tests for evaluating otolith function in clinical practice. We developed a simple, portable and affordable device to record VEMP responses on patients, named μVEMP. Our aim was to validate and field test the new μVEMP device.Methods: We recorded cervical VEMPs and ocular VEMPs in response to bone conducted vibration using taps tendon hammer to the forehead (Fz) and to air conducted sounds using clicks. We simultaneously recorded VEMP responses (same subject, same electrode, same stimuli) in three healthy volunteers (2 females, age range: 29–57 years) with the μVEMP device and with a standard research grade commercial (CED) system used in clinics. We also used the μVEMP device to record VEMP responses from six patients (6 females, age mean±SD: 50.3 ± 20.8 years) with classical peripheral audio-vestibular diseases (unilateral vestibular neuritis, unilateral neurectomy, bilateral vestibular loss, unilateral superior canal dehiscence, unilateral otosclerosis).Results: The first part of this paper compared the devices using simultaneous recordings. The average of the concordance correlation coefficient was rc = 0.997 ± 0.003 showing a strong similarity between the measures. VEMP responses recorded with the μVEMP device on patients with audio-vestibular diseases were similar to those typically found in the literature.Conclusions: We developed, validated and field tested a new device to record ocular and cervical VEMPs in response to sound and vibration.This new device is portable (powered by a phone or tablet) with pocket-size dimensions (105 × 66 × 27 mm) and light weight (150 g). Although further studies and normative data are required, our μVEMP device is simpler (easier to use) and potentially more accessible than standard, commercially available equipment

    Law and (rec)order: Updating memory for criminal events with body-worn cameras.

    No full text
    Body-worn video is increasingly relied upon in the criminal justice system, however it is unclear how viewing chest-mounted video may affect a police officer's statement about an event. In the present study, we asked whether reviewing footage from an experienced event could shape an individual's statement, and if so, whether reporting before reviewing may preserve an officer's original experience. Student participants (n = 97) were equipped with chest-mounted cameras as they viewed a simulated theft in virtual reality. One week later, half of the participants recalled the event in an initial statement while the other half did not. Participants then viewed either their body-worn video or a control video. Finally, participants provided their statement (no initial statement condition) or were given the opportunity to amend their original account (initial statement condition). Results revealed that viewing body-worn video enhanced the completeness and accuracy of individuals' free recall statements. However, whilst reviewing footage enabled individuals to exclude errors they had written in their initial statements, they also excluded true details that were uncorroborated by the camera footage (i.e., details which individuals experienced, but that their camera did not record). Such camera conformity is discussed in light of the debate on when an officer should access their body-worn video during an investigation and the influence of post-event information on memory

    The Video Head Impulse Test

    Get PDF
    In 1988, we introduced impulsive testing of semicircular canal (SCC) function measured with scleral search coils and showed that it could accurately and reliably detect impaired function even of a single lateral canal. Later we showed that it was also possible to test individual vertical canal function in peripheral and also in central vestibular disorders and proposed a physiological mechanism for why this might be so. For the next 20 years, between 1988 and 2008, impulsive testing of individual SCC function could only be accurately done by a few aficionados with the time and money to support scleral search-coil systems-an expensive, complicated and cumbersome, semi-invasive technique that never made the transition from the research lab to the dizzy clinic. Then, in 2009 and 2013, we introduced a video method of testing function of each of the six canals individually. Since 2009, the method has been taken up by most dizzy clinics around the world, with now close to 100 refereed articles in PubMed. In many dizzy clinics around the world, video Head Impulse Testing has supplanted caloric testing as the initial and in some cases the final test of choice in patients with suspected vestibular disorders. Here, we consider seven current, interesting, and controversial aspects of video Head Impulse Testing: (1) introduction to the test; (2) the progress from the head impulse protocol (HIMPs) to the new variant-suppression head impulse protocol (SHIMPs); (3) the physiological basis for head impulse testing; (4) practical aspects and potential pitfalls of video head impulse testing; (5) problems of vestibulo-ocular reflex gain calculations; (6) head impulse testing in central vestibular disorders; and (7) to stay right up-to-date-new clinical disease patterns emerging from video head impulse testing. With thanks and appreciation we dedicate this article to our friend, colleague, and mentor, Dr Bernard Cohen of Mount Sinai Medical School, New York, who since his first article 55 years ago on compensatory eye movements induced by vertical SCC stimulation has become one of the giants of the vestibular world
    corecore